PENERAPAN ALGORITMA NAIVE BAYES UNTUK PREDIKSI HEREGISTRASI CALON MAHASISWA BARU
Abstract
Admission of new students is an important activity for universities to obtain new students. In the admission of new students, it is often the case that registration is not carried out by the registrant. This also happened in the admission of new students at UNISNU Jepara. Universities don't yet have a way of knowing whether a prospective new student is likely to enroll or not. Based on these problems, the Naive Bayes algorithm is applied to predict whether prospective new students are likely to register or not. The dataset used in this study was taken from PMB data for 2019-2020. The initial dataset obtained was 3,969 records with 18 (eighteen) attributes. Then pre-processing the data is carried out so that the dataset to be used becomes 2,853 records with 14 (fourteen) attributes with details of 1 (one) ID attribute, namely name, 12 (twelve) regular attributes, namely year of registration, class program, gender, age. , study program, city of origin, father's occupation, mother's occupation, parent's income, home school major, National Examination scores, registration information, and 1 (one) class attribute, namely the status of hereditary. The dataset is processed using the Naive Bayes algorithm and tested using a confusion matrix and ROC (Receiver Operating Characteristic) curve using RapidMinner tools. Obtained an accuracy value of 92.67% and an AUC (Area Under Curve) value of 0.841 which is categorized as a good classification.
References
[2] E. Prasetyo, “Data mining konsep dan aplikasi menggunakan matlab,” Yogyakarta Andi, 2012.
[3] M. winny Amelia, A. S. . Lumenta, and A. Jacobus, “Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes,” J. Tek. Inform., 2017, doi: 10.35793/jti.11.1.2017.17652.
[4] W. D. Septiani, “Komparasi Metode Klasifikasi Data Mining Algoritma C4.5 Dan Naive Bayes Untuk Prediksi Penyakit Hepatitis,” None, vol. 13, no. 1, pp. 76–84, 2017.
[5] F. N. Hasan, N. Hikmah, and D. Y. Utami, “Perbandingan Algoritma C4.5, KNN, dan Naive Bayes untuk Penentuan Model Klasifikasi Penanggung jawab BSI Entrepreneur Center,” J. Pilar Nusa Mandiri, 2018.
[6] S. Supria, L. Lidyawati, and S. Mawarni, “Sistem Prediksi Pengunduran Diri Calon Mahasiswa Baru Menggunakan Algoritma C45,” in Seminar Nasional Industri dan Teknologi, 2018, pp. 227–236.
[7] H. Amalia, A. Pohan, and S. Masripah, “Penerapan Feature Weighting Optimized Pada Naive Bayes Untuk Prediksi Proses Persalinan,” J. Pilar Nusa Mandiri, vol. 15, no. 1 SE-Articles, Mar. 2019.
[8] Kusrini and L. E. Taufiq, Algoritma Data Mining. Yogyakarta: Andi, 2009.
[9] Y. A. Sari and A. Arwan, “Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naïve Bayes Human Detection and Tracking View project Smart Nutrition Box View project,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2018.
[10] M. R. Maulana and M. A. Al Karomi, “Information Gain untuk Mengetahui Pengaruh Atribut Terhadap Klasifikasi Persetujuan Kredit,” J. PEMERINTAH KOTA PEKALONGAN, vol. 9, 2015.
[11] Y. B. Samponu and K. Kusrini, “Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu,” J. ELTIKOM J. Tek. Elektro, Teknol. Inf. dan Komput., vol. 1, no. 2, pp. 56–63, 2017.
[12] S. Syarli and A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” J. Ilm. Ilmu Komput., vol. 2, no. 1, pp. 22–26, 2016.
[13] E. Turban, J. E. Aronson, and T. Liang, Decision Support Systems and Inteligent System, 7th ed. Yogyakarta: Penerbit : Andi, 2005.
[14] D. Putra and A. Wibowo, “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” vol. 2, pp. 84–92, 2020.
[15] A. Siregar and A. Paspabhuana, “Pengolahan Data menjadi Informasi dengan Rapidminer.” Surakarta, 2017.
Copyright and License
Penulis yang menerbitkan dengan jurnal ini menyetujui persyaratan berikut:
-
Semua materi yang terkandung di situs ini dilindungi oleh hukum. Dilarang mengutip sebagian atau seluruh isi website ini untuk tujuan komersial tanpa persetujuan dewan redaksi jurnal ini.
-
Jika Anda menemukan satu atau beberapa artikel yang terdapat dalam Jurnal Teknik Informatika yang melanggar atau berpotensi melanggar hak cipta Anda, harap laporkan kepada kami, melalui email ke Kontak.
-
Aspek hukum formal dari akses ke informasi dan artikel apa pun yang terdapat dalam situs web jurnal ini mengacu pada persyaratan lisensi Creative Commons Attribution-ShareAlike (CC BY-SA).
-
Semua informasi yang dimuat dalam Jurnal Teknik Informatika adalah akademik. JTINFO tidak bertanggung jawab atas kerugian yang timbul akibat penyalahgunaan informasi dari situs ini
Jurnal Teknik Informatika dilisensikan di bawah Creative Commons Attribution-ShareAlike 4.0 International License.